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ABSTRACT
We present eWitness, an architecture that turns a smart phone or
other such mobile device into an authenticated camera for foren-
sically sound evidence acquisition and submission. In addition,
eWitness provides privacy for witnesses, allowing them to sub-
mit evidence under the protection of anonymity and thus without
fear of retribution. We provide a threat model and introduce a de-
sign that preserves witness privacy while protecting the integrity
of the evidence �le and it’s spatio-temporal context against each
threat. The purpose is to ensure that the evidence self certi�es its
authenticity and hence is admissible in a court. In eWitness, the
integrity of the evidence �le is proved using robust hashing, the
temporal context is preserved using a time stamping service imple-
mented as a block chain, and the spatial context is certi�ed through
a location attestation service. These three components together
strengthen con�dence on the forensic soundness of the evidence
and neither reveals the witness identity or location. In this paper,
we present the design details of eWitness components and evaluate
the performance of the time-stamping blockchain service that uses
a hashgraph based consensus process. We �nd that this blockchain
is e�cient and reasonable for practical use.
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1 INTRODUCTION
The introduction of mobile computers has revolutionized one’s
participation in society, opening up multiple avenues for partici-
pation in entertainment, social activities, commerce, politics, and
other activities. This increased possibility for interaction in society
also increases one’s ability to capture media of important events,
including crimes and other undesirable activity, bene�ting police,
journalists, and other investigators. Such digital evidence, volun-
tarily submitted by a bystander can be valuable to prosecute the
perpetrator of a crime. Unfortunately, the rise of technology also
makes it easier for one to create false media which represent events
that did not occur, or alter the time-line of events that did occur in
some meaningful way. Even if the content of the evidence itself is
not modi�ed, meta-data of the content, such as the location a photo
was taken, or the time of capture, can be falsi�ed. Since tampering
with digital �les and meta-data is all too easy, an argument can be
made to de-legitimize any such volunteered digital evidence that
does not self-authenticate itself or is not attested by an alibi. For
example, a video claiming to be shot in Congo, exposed atrocities
against unarmed civilians by the Congolese military was recently
in circulation in western newspapers [14]. However, the Congolese
government was quick to dismiss the video by saying that it was
shot in some other African country.

One solution to this problem is forensic analysis of the digital
evidence �le that is voluntarily submitted. In this method, forensic
investigators analyze the evidence �le to determine if any modi-
�cations have been made. A second commonly used solution in
practice is to ask the witness to submit the entire device to an
investigator. The investigator then uses digital forensics software
such as EnCase [31] to download the hex image of the device stor-
age. This allows a comprehensive look into logs or other artifacts
that could indicate if the information related to the evidence �les
was tampered with. Both solutions su�er from several drawbacks.
First, they is slow and �nancially expensive; they require forensic
analysts to be hired, to analyze the computer �les related to the
evidence, potentially slowing down an investigation. In addition,
these digital forensic processes are often subject to human and
software error [2]. If the matter was to then go to court, the analyst
would then need to be retained for expert witness duty, which adds
to the cost of the investigation. For these reasons, the new rule in
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digital investigation requires that digital evidence extracted using
forensic software should be self-authenticating in order to elimi-
nate the need to call the expert witness [23]. In addition, the second
solution eliminates privacy for the witness since the investigator
now has access to all personal data that belongs to the witness. This
potentially makes them vulnerable of being subject to ridicule in
the court and retaliation from the o�ender.

In this paper, we present eWitness, an architecture that turns
a smart phone or other such device into an authenticated cam-
era [18], capable of capturing digital multimedia evidence which
is self-certifying and tamper proof. The purpose of eWitness is
to provide reasonable assurance of the integrity of the �le and
attesting the temporal and location contexts associated with the
event in question. This assurance is necessary to prove the forensic
soundness of the evidence in a court.

The rest of the paper is organized as follows. We present the
threat model in Section 2, related work in Section 4 and the eWitness
architecture that is able to counter these threats in Section 3. The
functional speci�cation and performance evaluation are presented
in Sections 5 and 6 respectively. We �nally present the limitations
(Section 7), future work (Section 8) and conclusions (Section 9).

2 THREAT MODEL
Despite assuming that the witness is willing to submit the evidence,
we assume that neither the witness of a crime nor the investigator
of a crime can be fully trusted. Witnesses have the potential to
alter evidence before submitting it to investigators to provide false
assurances of innocence, place the blame for a crime elsewhere,
or provide false clues to mislead the investigators. Similarly, an
investigator may alter evidence for similar reasons, or to provide
a stronger case for the prosecutor. If such adversaries are present,
a genuine, untampered evidence �le is subject to suspicion and
scrutiny by the attorneys in the court. To address these issues, the
validity of the content must be maintained by a third party. In the
world of crime, however, there are many powerful actors. If a single
third party veri�es the content of submitted evidence, it may be
susceptible to blackmail, bribery or political retributions.

eWitness is implemented as a client-server architecture where
the clients are witnesses that submit evidence and investigators who
analyze the evidence. Servers are maintained by a consortium of
non-pro�t organizations and activist groups. We assume that both
clients and a subset of the consortium servers can be compromised
by an adversary or can turn malicious due to their own con�ict of
interests.

2.1 Compromised or Malicious Server
In our model, a compromised server has one or more of the follow-
ing goals:

• Modify entries: This would allow the adversary to force the
compromised server to destroy the reputation of a submitted
piece of evidence, or to attempt to verify their own potentially
doctored evidence instead. This is done simply by editing the
entries on the server’s storage or in memory.

• Delete entries: This would allow the adversary to force the
compromised server to revise the time-line, also discrediting a

piece of evidence or silencing it all together. This can be done by
selectively deleting entries on the server’s storage or in memory.

• Deny access to users: This would allow the adversary to
compromise the server so that it is biased in accepting evidence
or limit the types of events the clients can submit evidence about.
This also allows for denying evidence of an event all together.
This can be done by IP blocking or by taking servers o�ine.

Therefore, the compromised servers that we consider become ac-
tively malicious.

2.2 Compromised or Malicious Client
In our design, we consider two types of clients: the witness and the
investigator. The witness captures evidence of an event, provides
the eWitness service with proof of the existence of this evidence,
and then provides the evidence to the investigator. The investigator
then receives evidence of an event from the witness and uses the
eWitness service to verify the authenticity of the evidence. This
leads us to two di�erent classes of attacks.

• Witness Client: A malicious witness client wishes to upload
convincing altered evidence to the eWitness server, or to the
investigator. This can be done by altering a picture taken from
a crime scene before uploading to the service, or by sending
altered evidence to the investigator, or both.

• Investigator Client: A malicious investigator client wishes
to deny the existence of evidence, falsely claim that evidence
has been altered, or falsely introduce altered or fabricated evi-
dence. This can be done by claiming that the evidence was never
received by the investigator, by claiming that the investigator
determined that evidence had been maliciously altered, or by an
investigator uploading a proof of existence of false evidence to
the eWitness network.

3 EWITNESS DESIGN GOALS AND
ARCHITECTURE

We created eWitness to provide witness with a way to privately
submit evidence and investigators with a way to receive and verify
privately submitted evidence. Though we assume that the witness
is volunteering the information, we still recognize the importance
of defending against a witness submitting false evidence. Likewise,
we recognize the importance of defending against a malicious inves-
tigator who claims that evidence was tampered with, or claims that
evidence doesn’t exist, or who actively seeks to harm or silence a
witness. Therefore, we designed eWitness with the goals of privacy
and forensic soundness in mind. We achieve forensic soundness in
eWitness through veri�ability, reproducibility, and transparency.
We achieve privacy in eWitness through witness anonymity.

There are three main components that make up the eWitness
system:

(a) a smart device application with encrypted private storage space
to capture and store digital multi-media evidence. The application
also stores logs such as use of camera, microphone and other
device sensors at the time the application is in use. Part of the
veri�ability and transparency goals are achieved through this
application
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(b) a collusion resistant time-stamping service that attests the tem-
poral context of the evidence. This service is designed to provide
transparency and supports anonymity

(c) a location attestation service that validates the location context
of the evidence recorded by on-board sensors on the device. This
service should support anonymity, veri�ability and reproducibil-
ity.

3.1 Content Veri�ability
For a piece of evidence to be accepted as reliable, it must be rea-
sonably veri�able. In other words, the receiver of the content must
be able to determine if the content he or she received has not been
altered or modi�ed in any way, within a certain margin of error.
Veri�ability is necessary for multiple reasons. Firstly, veri�ability
allows investigators and interested parties to avoid wasting their
time on leads derived from false evidence. Secondly, veri�able evi-
dence is more easily accepted in courts. Thirdly, veri�ability does
not allow a malicious investigator to discredit a valid piece of evi-
dence, or to introduce fake evidence. Lastly, veri�ability avoids the
need for determining witness credibility. This last bene�t is very
important, since eWitness allows for anonymous submission as
discussed later in this section. The content veri�ability is supported
by the eWitness application through the use of robust hashing to
ensure �le integrity and secure maintenance of device logs. At the
time of installation, the application generates a private-public key
pair. The application user, depending on her privacy needs, regis-
ters with the eWitness system to create a personal or public pro�le.
A public key is archived in the pro�le and the private key is stored
in the application. The eWitness application users capture digital
evidence in the form of pictures, videos and voice recordings using
the application. Each evidence is stored in the application’s internal
storage and the �le is hashed using a robust hashing scheme[33].
The hash is signed using the unique private key that is generated
during installation. The signed hash of the evidence �les can be
later used as a proof that the �le is the un-tampered true original.
The application then obtains a location proof from the eWitness
location attestation service to tie the evidence to the location of the
event.

3.2 Transparency
Transparency is an important part of any forensic investigation. It
allows investigators on all sides of an incident to determine how the
evidence was veri�ed by an investigator, allowing each investigator
to construct a chain of evidence. Without transparency, systems
can be abused to bene�t the ones in charge of the investigation,
making the investigation unreliable at best and malicious at worst.
Therefore, eWitness requires all operations to be transparent to all
people wishing to audit the system. This allows for accountability
of all operators, and can lead to an increase of trust in the eWitness
system. In addition, transparency allows for the quick identi�cation
of attacks and �aws in the system. Lastly, transparency increases
veri�ability, since people reviewing evidence can be sure that the
servers acted in good faith.

The eWitness application, uploads the evidence digest, contain-
ing the robust hash of the �le and that of associated information
obtained from the device sensors and the location proof, to a set

of miners in the eWitness evidence mining network. Miners are
distributed servers maintained by a consortium of non-pro�t organi-
zations and possibly by general public. Miners execute a consensus
protocol to ensure that all digests that were received are archived
in the blockchain, digests are not modi�ed, previously included
digests are not moved and none of the legitimate eWitness users
are maliciously denied service by colluding miners. A block is built
containing the digest, the time at which the digest was �rst received
as well as the proof that it was received by and voted for by atleast
2
3
A3 of the miners. This block is added to the publicly available

eWitness blockchain. The time stamp C of the block, obtained from
this blockchain, attests that the evidence was captured at some time
C′which is no later than the time C .

In this paper, we focus on the eWitness time-stamping ser-
vice.

3.3 Anonymity
Lastly, eWitness o�ers privacy to individuals submitting evidence
to investigators or interested parties. As mentioned above eWitness
provides privacy through anonymous submission. Anonymous tips
are a well established legal tradition in the United States, and eWit-
ness aims to continue this tradition and expand it to anonymous
submission of evidence. This is important to protect witnesses from
potentially dangerous individuals that are the subject of investiga-
tions. In addition, anonymous evidence submissions allows one to
provide evidence of corruption to interested parties without fear
of retribution. Thus the application only uploads a hash to the
miners rather than the entire evidence. This hash does not con-
tain any meta-data or identifying information, other than being
signed using the private key. The public key is archived during
the eWitness registration process where anonymous registration is
also supported. An eWitness device can obtain its location through
passive scanning and then obtain location attestation anonymously
using crowd-sourcing or network measurements. This component
of eWitness is left for future work. In the related work section 4, we
have listed several prior work on anonymous location attestation.

4 PREVIOUS WORK
The only system that comes close to eWitness is the SecureDrop [1],
an open source software developed by the late Aaron Swartz, an en-
trepreneur and Internet hactivist. The software is now maintained
by the Freedom of Press foundation. The SecureDrop is individually
used by di�erent newspapers to allow anonymous communication
with whistleblowers and under-cover journalists. This service is
safe for the users as it allows high degree of privacy, however there
is no way to ensure the truthfulness of the data being submitted.
Therefore, the main di�erence between SecureDrop and eWitness
is that an evidence submitted through the latter has features that
make them self-certi�able.

In this section we present related work in three areas: techniques
to prove �le integrity, time-stamping services that are proposed
for crypto-currencies and techniques that generate location proofs
using crowd-sourcing and network measurements. These form the
three components of the eWitness that make the evidence self-
certi�able to a large extent.
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4.1 File integrity
In normal applications, �le integrity has typically been guaranteed
by secure hash funcitons, or one way functions that take arbitrary
length binary input and map it to a �xed length output. In order
to be a cryptographically secure hash, the function must have the
following properties: [24]

(1) preimage resistance
(2) 2nd-preimage resistance
(3) collision resistance

Though these properties work very well for the integrity of
arbitrary �le types, they tend to be limited in usefulness for im-
ages. Many images undergo many di�erent operations that do not
signi�cantly alter the content before and after they traverse the
Internet. These operations include geometric transformations, com-
pression, de-noising, format conversion, and others. Though these
operations do not meaningfully alter the content of the �le, they
do produce signi�cantly di�erent hashes when traditional hashing
methods are used. To authenticate images, one must use a hashing
algorithm, called a robust image hashing algorithm, that is immune
to such transformations while being sensitive to operations that
a�ect the content of the image [29]. Many di�erent image hashing
algorithms exist, using techniques such as Fourier transformation
[26], Zernike moments [33], and more. For the purposes of general-
ity and forward-compatability, we do not make any assumptions
about the speci�c robust image hashing algorithm used, except
that it defends against meaningful alterations of the content such
as cropping, additions, deletions, and changes to already existing
picture content.

4.2 Blockchains for distributed time-stamping
Crypto-currencies have given a new life to research in distributed,
asynchronous consensus. The most prominent consensus system
used today is the bitcoin miner networks which is based on proof-
of-work [4] which requires the user to solve a cryptographic puzzle.
The user computes a string that when hashed generates a value
with a certain number of leading zeros. The problem of computing
the string is computationally extensive but veri�cation is cheap.
In Bitcoin blockchain, the proof-of-work is used to implement a
distributed timestamp server that maintains a public ledger of the
time order of transactions that used the crypto-currencies. Each
transaction is sent as a broadcast to the entire mining network.
Miners compute the next block using the transactions they receive.
The �rst miner to compute a block, broadcasts it to the others. If
the block can be veri�ed, other miners convey their acceptance by
using the hash of this block to work on the next block. This times-
tamp ledger acts as a safeguard against multiple spending of the
same coin. Proof-of-work requires heavy compute resources and
therefore reversing a block requires re-doing the work. If the block
chain has advanced, any alteration or tampering may need compu-
tation of several blocks. Therefore, the integrity of the blockchain
is guaranteed by the computational di�culty. The system requires
a minimum of 51% miners to turn rogue in order to successfully
compromise the integrity of the system. Therefore, the integrity
is largely dependent on the availability of large number of miners
which reduces the possibility that a cartel could take over by ac-
quiring 51% of the mining power of the network. However, as the

minting rate of crypto currency reduces, the transaction fee needs
to be increased accordingly in order to maintain the incentives that
attract a large number of miners needed to ensure security. If the
transaction fee falls close to zero, the system may su�er from the
tragedy of the commons with honest miners leaving the mining
network, making it vulnerable to the 51% attack.

An alternative distributed consensus is called proof-of-stake [7]
where the system consists of several currency holders who lock their
currency for a certain amount of time, i.e., place a stake. In order to
extend the consensus, the stakeholder sign the next block/extension.
The proof-of-stake algorithm may randomly selects some currency
holders to sign an extension. The system is secure as long as the
stakeholder is locked in for a su�cient amount of time that prevents
a stakeholder from �rst cashing out his stake and then create a
new fork starting at the point in history where the stakeholder
had control. The security of the system still depends on having
a critical mass of miners to reduce the possibility of collusion. A
hybrid method called Ppcoin was proposed [19] in 2011 where
the system consisted of two blocks. The �rst type of block, called
kernel, is generated using the proof-of-work method. The miner
who generates the kernel then creates a special transaction called
coinstake in which the miner pays a stake to gain the privilege
of generating the next block. The generation of the kernel using
proof-to-work introduces a stochastic process that ensures random
selection of stakeholder. Several other systems based on proof of
stake have also been proposed [8, 28].

Byzantine fault tolerance (BFT) has been studied in the context
of distributed processing and distributed databases [10]. A BFT
based system functions correctly as long as the number of faulty
entities is less than one-third of the total. When the conditions
of fault tolerance is achieved, the system is said to have quorum.
In the context of public ledgers such as in our application and in
crypto-currencies, a Federated Byzantine agreement system (FBAS)
has been proposed [21, 25] in order to reduce the latency involved
in achieving quorum with a large number of miners. Nodes partici-
pating in FBAS select their own trust group to form quorum slices.
A single node may be a part of one or more such slices. In order to
have protection against collusion attacks, the network must have
quorum intersection i.e., there may not be any pair of quorum slices
@8 , @ 9 with membership sets E8 , E 9 such that E8 ∩E 9 = ∅. This require-
ment ensures that no two quorum slices accept contradictory views
of a block. In addition, when byzantine nodes are present, a robust
FBAS system with a set of nodes + will consist of a dispensable set
� ⊂ + such that the quorum slices formed from the set +
� has quorum intersection as well as quorum. � may contain the
set of byzantine nodes � as well as nodes that have been blocked
by nodes in set � from acting correctly.

A hybrid proof-of-stake and BA system was proposed to enable
consensus without mining (Tendermint) [6, 20]. Thus, instead of
sending transactions as broadcasts to the network, they can be
sent to a single node in the network. Transactions are validated by
users who have coins at stake, deposited as a bond deposit using a
bond transaction. Thus validators have the incentive to only sign
valid transaction because if found guilty of signing a fraudulent
transaction, they might be forced to forfeit their bond. A block
consists of valid transactions and signatures. Only blocks with a
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2/3 majority of validator signatures is considered committed to the
ledger. The signatures are obtained through a partially synchronous
BA algorithm that assumes an upper bound on message latency. The
consensus system ensures that if a fork is created, both branches
may not consist of all valid transactions i.e., one of the branch must
contain some duplicitous validator signatures. Any block holder
can detect the guilty validator. As long as the guilty is found within
the unbonding period i.e„ before the validator cashes his bond out,
the system can recover from the fraudulent transaction. In order to
thwart long range double spend attacks, users must re-sync their
blockchain continually within the unbonding period.

More recently a hashgraph based byzantine agreement protocol
was proposed by Baird [5]. In this scheme, a user sends a hash to
one of the miners in the network. The receipt of the hash is denoted
as an event. The miner as well as the user re-broadcast the event
to additional miners i.e., gossip about the event to : other miners.
This leads to the gossip of the event propagating at exponential rate
and thus the network reaches consensus very quickly. Each gossip
has a chain of signatures from previous gossipers, and therefore
a chain with two-thirds of the miners’ signatures is su�cient to
declare consensus. Thus a �nal vote is not needed reducing the
overhead signi�cantly.

4.3 Location Proofs
It is important to tie a digital evidence with the location of the event
that is being presented in the evidence. While most smart-devices
are capable of obtaining their location through various publicly
available localization infrastructure, unfortunately it is also all too
simple to spoof the location by synthetically generating satellite,
wireless LAN and cellular signals [27, 30]. Davis et al [11] suggest
using a single third party, similar to a certi�cate authority, as an alibi
and using cryptographic means to protect privacy. However, this
solution su�ers from replay attacks, collusion to falsify the location
and to compromise the location privacy of the user. Arunkumar et
al [3] suggest a solution where all devices passively scan and report
each others presence along with their locations. If used globally
and in a large scale, this solution can �rst establish trust about
devices that are often truthful and then use the alibi provided by the
trusted devices. Similarly, Gambs et al [13] present a solution where
location proofs are obtained from a group of witnesses who are
present around the user. However, both solutions require a critical
mass of participants in all locations. In addition, these solutions
su�er from collusion attacks who could report false locations or
compromise the location privacy of the user. However, an alibi
based crowd-sourcing infrastructure for location proof can gather
a critical mass if several real-time location based services such as
ride hail, parking reservations, delivery services etc. start su�ering
from location forgery. Therefore, one direction of research is indeed
in building cheap and usable crowd-sourcing based anonymous
location proof systems if the threat for replay and wormhole attack
can be countered.

Geolocation in the network has been an area of research for
more than a decade. Several solutions have been suggested that use
round trip time and constraint satisfaction algorithms [15, 17] to
locate Internet hosts. Other techniques such as IP geolocation [17]
and proximity detection by measuring the timing of fast challenge

and response [9] can be used in parallel to improve accuracy. Wong
et al [32] suggest using round trip times (RTT) of data transmission
from �xed anchors at known locations in the Internet to estimate
distances from the device. Prior knowledge of RTT between the
anchors is used to correct for queuing delays. Additional informa-
tion such as IP geolocation, piecewise localization of intermediate
routers and elimination of implausible locations/regions are used
to create a set of positive and negative constrains. Then a circular
ring is computed around each anchor. The solution space consists
of a set of points bounded by Bezier curves calculated from these
rings. Experiments conducted by Wong et al [32] bounds location
errors to 22 miles and a follow up by Niang et al [22] shows that
selecting anchors that are geographically closer to the target pro-
vides more accurate location estimates. In our solution, we face
further di�culties such as use of Tor [12] by the target to conceal
her location in the network. The inter-router delays in Tor can be
variable and are in addition to queuing delays. However, Hopper et
al [16] show that the measured latency of Tor circuits and corre-
lation with the latency observed from the target may be su�cient
to extract some information about the network host to which the
target is connected. Such measurements from 2 or more hosts is
su�cient to locate the target.

A network measurement technique can counter the threat of lo-
cation forgery simply because it is hard for a target to synthetically
construct a set of network measurements while ensuring that the
forged location will fall within the error margin of the locations
estimated through the network measurements. This technique pre-
serves the location privacy of the user since the anchors themselves
only compute the possible circular region, and hence are unable to
pinpoint the location of the target unless they collude. Collusion
can be prevented if the system and target together select a random
set of anchors from a signi�cantly large pool.

5 EWITNESS TIME-STAMPING BLOCKCHAIN
DESIGN

We created eWitness to address the problem of private evidence
submission with forensic soundness. Our system consists of a set (
of servers and a set � of clients, which is broken into two subsets,
a subset of investigators �8 and a subset of witnesses �F . These
sets are not necessarily disjoint (�F ∩�8 is not always ∅). Servers
can interact with each other through any Byzantine Fault Toler-
ant decentralized consensus algorithms. For the proof of concept
implementation, we implemented eWitness with the Hashgraph
Consensus Algorithm. These participants interact through the fol-
lowing functions:

5.1 Submit Hashes
When a witness 2F ∈ �F collects evidence from a crime scene, they
must hash the evidence, perform a location attestation, and sign the
resulting values. The witness then can submit the created evidence
to the network. First 2F chooses = servers - = {B1, ..., B=}, - ⊂ ( ei-
ther at random or based on trust. When a witness captures evidence
4 (such as a photo) of an event of note, such as a crime or important
political event, the evidence is hashed on the witness’ device, giving
us ℎ = � (4). Each hash will be signed by the client, generating sig-
nature B = ( ( ?D1

2F
, ℎ), making it impossible for the server to alter
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Figure 1: A witness capturing evidence of a crime and receiving a location attestation from the attestation servers. This is then
uploaded to the eWitness miner network, which adds it to the blockchain.

the content of the submission without detection. Privacy preserv-
ing spatiotemporal attestation is then performed (see Subsection
4.3), giving us a location attestation ; . After this is done, the client
submits (ℎ, B, ;) to a server G8 ∈ - from the set of chosen servers - ,
starting with 8 = 1. The client 2F then queries the status of his or
her submission from a randomly selected server E ∈ ( where E ≠ G8
to act as a veri�er. The witness does this multiple times to act as
a veri�er. If the witness sees his or her content has successfully
propagated, the witness halts successfully. If the witness does not
see his or her content in the network within a con�gurable time pe-
riod or a con�gurable number of failed veri�cation attempts C , the
witness selects the next server and attempts to submit the content
again. This process protects against benign events such as server
failures as well as denial of service by malicious servers.

Using the hash ℎ of the evidence content 4 makes the system
tamper evident. If the witness attempts to give doctored evidence
4 ′ to an investigator, the investigator will hash the altered evidence
4 ′ and get ℎ′. The investigator will be able to determine that the
evidence is not genuine by observing that ℎ ≠ ℎ′. Likewise, if a
server G8 attempts to modify the �le in transit it will be detected
based on the same procedure above. Lastly, denial of service to
the witness or the investigator is solved through having = servers
{G1, ..., G8 , ..., G=} ∈ - responsible for the content. The consensus
mechanism of these servers will be discussed in more detail be-
low. Figure 11 demonstrates the process of evidence capture, hash
creation, and location attestation.

1The crime scene image was created by author Abu Badali. The blockchain image was
created by Theymos from Bitcoin wiki vectorization.

5.2 Add Content
When a server receives a content submission (ℎ, B, ;), it generates
a proxy URL D that an investigator can use to fetch the content
that the witness holds, which is returned to the witness as part of a
success message. It then adds the hash ℎ, the signature of the hash
B , and spatiotemporal commitment ; , and the proxy URL D to a list
of hash entries � . The server then enters the consensus stage.

5.3 Hash Consensus
Our service is capable of using any Byzantine Fault Tolerant decen-
tralized consensus algorithm. In our proof of concept implemen-
tation of eWitness, we used the Hashgraph Consensus Algorithm.
The Hashgraph algorithm is distributed with no leader, does not
require proof-of-work, is quick, and is e�cient in terms of network
communication. In the Hashgraph algorithm, each consensus server
spreads information through gossip with other servers. Through
gossip about gossip, every server B ∈ ( learns about every sub-
mitted piece of evidence with probability ? = 1, provided that the
number of malicious servers does not exceed |( |3 .

In the Hashgraph consensus algorithm, each member of the con-
sensus group randomly chooses another member of the consensus
group an sends them everything they know. The receiver then cre-
ates an event to acknowledge that they received the gossip and
returns it to the sender. Each event therefore has two ancestors,
a self-ancestor, which is the last event created by the receiver of
a gossip, and the other-parent, which is the previous event of its
communication partner. After each gossip, the nodes call three
functions, divideRounds, which assigns a round number to each
event, decideFame, which determines whether an event can be
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“seen” by a certain number of events, and �ndOrder, which assigns
a consensus time-stamp to each event and decides on the order of
events. For more details on the Hashgraph consensus algorithm,
see the whitepaper [5].

6 EXPERIMENTAL SETUP, SOFTWARE
DESIGN AND EVALUATION

We evaluated the e�ciency of eWitness’s client registration and
hash creation through the use of a prototype eWitness server and a
simulated eWitness client. The eWitness server ran on an Ubuntu
16.04.2 LTS Digital Ocean droplet with 1 GB of RAM, a single
CPU, and 30 GB of hard drive space. This digital ocean droplet
was chosen because of its cheap price of $10 per month, which is
a�ordable by most individuals or companies who may be interested
in participating in the eWitness network, though real prices would
be slightly more expensive for expanded storage. The simulated
eWitness client ran on a Fedora-23 Virtual Machine with 2 GB of
RAM and 4 virtual CPUs. The resources on this virtual machine are
less than those of a Samsung Galaxy S7 edge. Both the server and
the simulated client were implemented in Python version 3.4.3.

6.1 Registration Experiments
To test the feasibility of client registration in eWitness, we ran three
experiments to test the amount of time it took to register a client.
For the client, the process of client generation required generation
of an 4096 bit RSA keypair, creation of a cryptographic signature,
and sending a registration message to the server of choice. For
the server, this process involved checking that the cryptographic
signature was valid. We ran this experiment client-side with 10, 100,
and 1,000 client registrations, with average client registration times
of 9.64 seconds, 8.55 seconds, and 8.59 seconds respectively, and
an overall average of 8.59 seconds per client registration, including
network latency. Though this is a high number, it is a one-time
registration cost that is dominated mostly be cryptographic key
generation.

6.2 Hash Experiments
To test the feasibility of client hash submission in eWitness, we ran
three experiments to test the amount of time it took to submit a hash
to the chosen eWitness server. For the client, the process of hash
submission required calculating the SHA256 hash of a �le, signing
the hash with the client’s RSA keypair, and sending it over the
network to the eWitness server of choice. For the server, this process
involved checking the validity of the cryptographic signature on the
hash using keys stored from the registration experiment and storing
the hash if the signature check passed. We ran this experiment client
side with 100, 1,000, and 10,000 hash submissions, with average
hash submission times of 0.15 seconds, 0.16 seconds, and 0.16 per
hash respectively, and an average overall hash submission time of
0.16 seconds per hash, including network latency. This number is
low due to the e�ciency of modern cryptographic hash functions,
and shows how e�cient eWitness is for client devices. We leave
the testing of robust image hashes to future work.

6.3 Consensus Experiments
To test the feasibility of the consensus algorithm, we ran 4 experi-
ments to test the amount of time it took for an event to be accepted
by 2/3rds of the eWitness servers, with server groups of 5, 10, 20,
and 50 respectively. In these experiments, the server groups were
run on the same machine and communicated via connections on
localhost, and sharing a source of randomness for key generation.
In addition to the consensus algorithm, each server had a one-time
setup cost which included peer discovery and cryptographic key
generation. The average of our one-time setup costs in our 4 ex-
periments was 189.07 seconds. Though these setup costs are high,
they are dominated by key generation for each server and will be
improved drastically when run in parallel on separate machines,
and will be expected to run on the order of 10 seconds. In the �rst
experiment the 5 server eWitness network agreed on the status
of a submitted hash in 52.67 seconds. In the seconds experiment,
the 10 server eWitness network agreed on the status of a submit-
ted hash in 135.95 secondst. In the third experiment, the 20 server
eWitness network agreed on the status of the submitted hash in
180.05 seconds. In the �nal experiment, the 50 server eWitness net-
work agreed on the status of the submitted hash in 350.32 seconds.
Since these servers were run on the same physical machine and
communicated over TCP connections on localhost, these numbers
do not include the latency delays that would be present in a typical
Internet connection.

7 LIMITATIONS
Though eWitness is a great �rst step towards forensically sound
private evidence submission, there are still a few limitations of our
work. Firstly, eWitness’ reliance on using only distributed consen-
sus on submissions of meta-data to determine forensic soundness
creates no guarantees that a piece of evidence was not doctored
before it was uploaded to the service. This limitation is mitigated,
however, by the use of other forensic techniques that examine the
content of the evidence if it has been submitted to the network a
signi�cant amount of time after the event it purports to represent
has taken place.

Secondly, the location attestation aspect of eWitness could use
some improvement both in e�cacy and privacy. Clients using pri-
vacy enhancing tools such as Tor have the potential to frustrate our
location attestation techniques, since Tor introduces latency based
on the circuit chosen by the client. Similarly, a malicious client
that deliberately delays RTT can make its measurements useless.
Additionally, the location attestation servers are highly trusted, and
malicious location attestation servers can keep logs of IP addresses
and location attestation requests compromise the anonymity of
users.

Lastly, our approach assumes uniform trust across all of the nodes
for submission of content. Though this cannot a�ect the submission
of the hashes themselves due to the consensus mechanism and
digital signatures, it can expose a client’s IP address to a malicious
server run by an investigator or other interested party.

8 FUTUREWORK
Many of the limitations mentioned in Section 7 will be solved in
future work.
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Firstly, we intend on addressing the problem of location attesta-
tion to make it both more accurate and more private. This can be
done through passive measurement of an existing infrastructure,
such as cell phone networks. If a user is in a certain place at a
certain time, that user has the ability to sni� and hash signaling
messages on local cell phone towers. Since sni�ng is passive, this
action would not reveal any information that can identify the user,
other than that the user belongs to a set of individuals within a
certain area at a certain time. This approach, however, assumes the
cooperation of third party companies or the creation of an extensive
infrastructure to passively sni� cell phone signals in all areas.

Secondly, we intend on researching useful trust schemes for se-
lection of servers for the submission of content. These schemes
would be used to mitigate the threat of a client choosing a mali-
cious server seeking to deanonymize witnesses through IP address.
These trust schemes could include server �ngerprinting, identity
based trust schemes (a client only trusts a set of individuals or
organizations), context based trust schemes (the client trusts a set
of servers based on the content he or she is submitting), or other
trust schemes.

Lastly, we intend on researching possible inactivation schemes
to encourage individuals to run eWitness servers. One potential
way to incentives running an eWitness server is to cooperate with
bit-torrent trackers to allow heavy "leechers" of bit-torrent services
to gain reputation as a "seeder" for participating in the eWitness
network as a server.

Another potential solution is to build a peer-to-peer software
for eWitness such that the software has a low footprint in terms of
CPU, memory, and network utilization. People may choose to install
such an application simply as a good will or altruistic task. If this
approach is taken, eWitness would run a trusted, distributed third
part which will monitor and approve new eWitness servers in order
to minimize the likelihood of a Sybil attack and expel malicious
actors.

9 CONCLUSIONS
In this paper we presented eWitness, an architecture used to turn
a device into an authenticated camera for evidence collection and
private evidence submission. We described the threat model of
malicious witnesses and malicious investigators and how eWit-
ness protects against these threats using robust hashing, location
attestation, and Byzantine Fault Tolerant consensus. Lastly we cre-
ated a prototype implementation of eWitness and demonstrated
its practicality through three experiments: client registration, hash
experiments, and consensus experiments. Lastly, we introduced
future work that will improve the eWitness architecture.
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